Table 2. Comparison of AA-EQS for water according to Directive 2008/105/EC
(EC 2008) and taking into account endocrine disruption (Moltmann 2007)

methods for the assessment of endocrine disrupting
properties and pollutant mixtures. This is accounted for

with the application of Assessment Factors. Despite all
guidance their selection can be made within a certain
range. If selected too low adverse effects may be under-
estimated. Selection of AF with great care can lead to un-

reasonable low EQS. Ecotoxicological data are steadily

improving thanks to standardised methods and data gen-

AA-EQS AA-EQS
Substance (EC 2008) (Moltmann 2007)
[n/L] [wg/L]
p,p’-DDE 0.025* 0.0001
4-Nonylphenol 0.3 0.0033
Tributyltin compounds (cation) 0.0002 0.0001

eration by REACH legislation. Agreed endpoints and
standardised methods for endocrine disrupting substance

* AA-EQS for the sum of p,p’-DDT, o,p’-DDT, p,p’-DDE and p,p’-DDD

properties seem to be in sight leading possibly to a

e Results of in vivo test methods (e.g. induction of vitel-
logenin synthesis in fish, gonado-somatic index for fish)
should be given preference instead of in vitro test meth-
ods (e.g. receptor binding assay, reporter gene assay)
because the latter provide information on the endocrine
disrupting potential but do not allow to make predictions
for the intact organism

e Endpoints for endocrine disruption can be included in EQS
derivation in the same manner as other ecotoxicological
endpoints. Due to the fact that standardisation of me-
thods is still missing a case by case validation of results
iS necessary

e Taking into account endocrine disrupting properties via
endpoints reduces the limit concentration for a number
of substances in comparison with existing EQS, derived
according to the WFD method (7able 2).

Conclusions

In principle, the WFD derivation method for EQS considers
all relevant risks scenarios. Practically the derivation of “right”
EQS is hampered by data gaps and missing consolidated

further lowering of limit concentrations. The effect of
pollutant mixture appears to be the most difficult problem to
resolve.
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Background

The River Danube provides highly diverse ecosystems for
115 fish and 330 bird species, respectively, and supplies
drinking water for riparian settlements from Germany to Ro-
mania (Sommerwerk et al. 2009). Conceptual studies have
enhanced a better understanding of this highly valuable
ecosystem, its ecological, economic, and societal values. Ap-
plied research linked scientific knowledge with river man-
agement (e.g., Jungwirth et al. 2002).

A key stressor/pressure is pollution by nutrients and po-
tentially toxic substances. While point sources are mitigated
by waste water treatment plants, nonpoint inputs of nutri-
ents and contaminants are difficult to regulate because they
derive from activities dispersed over wide areas of land. In
aquatic ecosystems, nutrients (mostly phosphorus and
nitrogen) cause diverse problems such as toxic algal
blooms, loss of oxygen, fish kills, and loss of biodiversity.
Contaminants such as heavy metals (Gundacker 2000;
Woitke et al. 2003), persistent organic pollutants (POPs, in-
cluding polychlorinated biphenyls and polybrominated
diphenyl ethers; Covaci et al. 2006), and cyanobacteria-
produced microcystins (Ueno et al. 1996) can cause se-
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vere and sometimes irreversible effects on aquatic biota
and humans.

To prevent chemical hazards multidisciplinary scientific
approaches are required to protect aquatic ecosystems
from often long-lasting damage. The scientific discipline
‘ecotoxicology’ connects ecological and toxicological
knowledge on a cause-effect level. Aquatic ecotoxicology is
concerned with toxic effects on organisms in various habi-
tats and at various trophic levels, ranging from primary pro-
ducers to top consumers. However, there are natural
constraints of in situ ecotoxicological research because it is
difficult, if at all possible, to test specific toxic cause-effect
relationships in highly dynamic aquatic ecosystems. Prob-
ably because of such constraints many ecotoxicological
studies of aquatic ecosystems remain descriptive, but pro-
vide valuable information from the molecule and cell level
to the ecosystem level, complementing ecological investi-
gations (Figure 1).

Bioconcentration, bioaccumulation,
and biomagnification

It is important to know that contaminants in aquatic
ecosystems can be incorporated by organisms in three ways:

(1) Bioconcentration is the direct uptake of chemicals from
water; through this process, the chemical concentration
in the aquatic organism becomes higher than in water
because uptake exceeds excretion.

(2) Bioaccumulation is the absorption/uptake of chemicals
via food and water; this process involves biological se-
questering of substances entering through respiration,
food intake or skin contact and results again in a net in-
crease of chemical concentration in aquatic organisms.

(3) Biomagnification goes beyond single organisms and is
defined as the increase in chemical concentration with
each trophic level transformation in the food chain, re-
sulting in the highest concentrations in the upper trophic
levels (i.e., top predators such as fish eating birds and
humans). If a chemical is sufficiently hydrophobic or
lipophilic and recalcitrant (i.e., cannot be biotransformed)
it will have a tendency to biomagnify through food webs.
The degree of biomagnification is evalutated by the
octanol-water partition coefficient (log Kew > ~ 4) which
measures the concentration of a chemical in octanol as
organic solvent and in water. It should be stressed that
although a contaminant does not biomagnify, dietary
exposure may still be the most important exposure route
for aquatic organisms (Borgd et al. 2004).

Bioconcentration studies in organisms of the Danube are
very scarce. For example, Thielen et al. (2004) studied bio-
concentration of metals in the intestinal parasite Phom-
phorhynchus laevis and its fish host, the barbel (Barbus
barbus). Gundacker (2000) examined bioaccumulation in
metal-polluted habitats of the Danube around the city of Vi-
enna, Austria, and found 20-fold higher concentrations of

heavy metals (Cd, Pb, Cu, and Zn) in gastropods than
bivalves. This author concluded that specific dietary source
vectors for metal bioaccumulation still remain to be eluci-
dated. In a recent study, Soeroes et al. (2005) investigated
different arsenic species in freshwater mussels of the Hun-
garian Danube and stated that the fate and potential hazard
of arsenic to other organisms at different trophic levels is still
largely unknown. Finally, food web studies on contaminant
biomagnification of the Danube are equally scarce (see Bro-
Rasmussen 1996) and clearly warrant further attention.

Essential and potentially toxic compounds
in aquatic food webs

Detailed ecotoxicological understanding is gained when
investigating compounds that are essential and potentially
toxic for aquatic organisms. Essential compounds are physio-
logically required by consumers, yet cannot be synthesized
de novo, or cannot be synthesized in quantities sufficient to
meet an organism’s need for somatic growth, reproduction
and survival (see Goulden & Place 1990, for daphnids; Tocher
2003, for teleost fishes). For example, some poly-unsaturated
fatty acids (PUFA) and trace elements such as zinc (Zn), iron
(Fe) or calcium (Ca) are considered essential, and if
inadequate amounts are available in the diet the health and
fitness of an organism can be reduced. Toxic compounds have
no physiological value for organisms, but can be accumulated
by consumers and may be lethal when concentrations are
sufficiently high. However, essential compounds can also be
toxic if concentrations are high enough or if they are converted
to other molecules through cell metabolism. For example, it
has been suggested that PUFA in diatoms are converted to
unsaturated aldehydes which reduce egg hatching rates in
marine herbivorous copepods (Miralto et al. 1999).

Lipids are amongst the most important nutritional factors
that affect the fitness of aquatic organisms, supplying en-
ergy and essential compounds for general metabolic function,
somatic growth, reproduction, enhanced immunocompe-
tency, and are trophically transferred (Arts et al. 2009). How-
ever, trophic transfer of lipids (still poorly understood in the
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Figure 1. Levels of integration between ecology and ecotoxicology in aquatic eco-
systems. Aquatic ecotoxicology seeks to increase knowledge, based on explana-
tory principles, about potential contaminants in aquatic ecosystems from
molecules to the ecosystem level
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Danube) also conveys lipophilic contaminants from resources
to consumers (Borga et al. 2004). Consequently, contami-
nants that bioaccumulate can counteract the mostly favorable
physiological effects of essential dietary nutrients, particu-
larly at higher trophic levels, and eventually in humans, be-
cause their trophic transfer may follow similar pathways as
those of lipids (Kainz & Fisk 2009).

Biomarkers in aquatic ecotoxicology

When diet is the major conveyor of contaminants to
aquatic consumers, ecotoxicologists often use tracers to in-
dicate dietary sources of these contaminants. For example,
stable isotopes of naturally occurring elements (Broman et
al. 1992) and specific contaminants of concern (e.g., stable
isotopes of Hg; Orihel et al. 2006) are applied to quantify
bioaccumulation of contaminants to specific trophic levels
within the aquatic food web. In ecotoxicology, the application
of stable isotopes, &'°N as an indicator of consumer trophic
position (Cabana & Rasmussen 1994) and &'3C as an in-
dicator of the dietary source (Campbell et al. 2000) is wide-
spread. As some essential fatty acids bioaccumulate along
aquatic food webs, they have been used as an index of heavy
metal bioaccumulation of zooplankton (Kainz et al. 2006). In
a study on herring gull trophodynamics from sites across the
Laurentian Great Lakes, Hebert et al. (2006) showed that egg
omega-3 fatty acid concentrations correlated significantly
with egg ©'5N values (and contaminant levels; Hebert, pers.
comm.) providing further information on how food web struc-
ture influences lipid and contaminant dynamics in aquatic
ecosystems. Such highly informative biomarkers have, as yet,
rarely been applied in the Danube ecosystems. From an
ecosystem protection point of view, studies that link effects
of essential with potentially toxic substances on aquatic or-
ganisms of the Danube will greatly improve our understand-
ing of these precious ecosystems.

Ecotoxicology — perspectives for research
on the River Danube

In addition to the above mentioned field research, lab
studies are required to understand how and under which
conditions contaminants affect organisms. ‘Classical’ eco-
toxicology test series are summarized elsewhere (Newman &
Unger 2003) and involve, for example, toxicity tests to eval-
uate concentrations of contaminants resulting in death of
50% of exposed individuals by a predetermined time (LC50
test; see article of Kopf & Pluta). Other and physiologically
perhaps more informative tests evaluate sublethal effects,
which occur at concentrations below those inducing somatic
death. They are most often recognized as some change in
an important physiological process, somatic growth, repro-
duction, etc. The understanding of such sublethal effects on
organisms is highly relevant because they may have lethal
consequences in an ecological context, in which the individ-
ual must successfully compete with other species, avoid pre-

dation, find a mate, and/or cope with multiple stressors. Un-
fortunately, thus far, little is known about effects of aquatic
contaminants on organisms and their cell functioning, cell
composition (e.g., changes of integral membrane lipids) of
organisms of the River Danube. Clearly, the field of connect-
ing ecology with toxicology in aquatic ecosystems of the
Danube is still wide open and invites ecotoxicological re-
search to step forward and understand how many organisms
are likely to adapt, or fail to adapt, to upcoming changes.
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